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a b s t r a c t

Widespread application of dynamic optimization with fast optimization solvers leads to increased
consideration of first-principles models for nonlinear model predictive control (NMPC). However,
significant barriers to this optimization-based control strategy are feedback delays and consequent loss
of performance and stability due to on-line computation. To overcome these barriers, recently proposed
NMPC controllers based on nonlinear programming (NLP) sensitivity have reduced on-line computational
costs and can lead to significantly improved performance. In this study, we extend this concept through
a simple reformulation of the NMPC problem and propose the advanced-step NMPC controller. The main
result of this extension is that the proposed controller enjoys the same nominal stability properties of the
conventional NMPC controller without computational delay. In addition, we establish further robustness
properties in a straightforward manner through input-to-state stability concepts. A case study example
is presented to demonstrate the concepts.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

NMPC is a feedback control strategy based on the on-line so-
lution of moving horizon optimal control problems (OCPs). As
industrial NMPC applications demand the incorporation of increas-
ingly larger and detailed dynamic processmodels (Bartusiak, 2007;
Franke & Doppelhamer, 2007; Nagy, Franke, Mahn, & Allgöwer,
2007), the development of efficient numerical methods for the so-
lution of large-scale OCPs becomes essential. While advances in
optimization strategies and algorithms have enabled the solution
of increasingly larger OCPs, on-line implementations of NMPC still
represent a challenge (Biegler, 2000). This is particularly true in
large-scale applications where the solution of the OCP takes a non-
negligible amount of time, giving rise to computational delays.
The effect of computational delays on the performance of NMPC

has been noted by Santos et al. in a laboratory reactor (Santos,
Afonso, Castro, Oliveira, & Biegler, 2001) as well as in numerous
industrial studies. Deterioration of stability has been studied
in Chen, Balance, and O’Reilly (2000) and Findeisen and Allgöwer
(2004). To address this issue, real-time NMPC strategies such as
explicit NMPC, neighboring extremals, Newton-type controllers
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and NLP sensitivity-based controllers represent some alternatives.
Explicit NMPC approaches compute off-line control actions based
on a full enumeration of possible states. This approach is
most suitable for systems with a few states where the effect
of combinatorics is rather small (Bemporad, Morari, Dua, &
Pistikopoulos, 2002; Grancharova, Johansen, & Tondel, 2007).
For systems with large state spaces, on-line NMPC controllers
represent a more efficient alternative. Among these, Newton-type
controllers perform a single iteration (full Newton step) in the
solution of the OCP at each time step. This requires the solution
of a quadratic programming (QP) problem constructed around the
solution of the QP at the previous time step (De Oliveira & Biegler,
1995; DeHaan & Guay, 2006; Diehl, Bock, & Schlöder, 2005; Li &
Biegler, 1988). This allows a fast disturbance rejection mechanism
that has shown good practical performance in some applications.
In addition, it can be shown that if the series of QPs is initialized
around a sufficiently good reference solution, then the QP series
can converge to the solution of the moving horizon OCPs. This
result follows from the local convergence properties of Newton’s
method and the parametric properties of themoving horizonOCPs.
With this, nominal stability of Newton-type controllers can be
guaranteed in the face of this approximation by making use of the
inherent robustness properties of NMPC (Diehl, Findeisen, Bock,
Schlöder, & Allgöwer, 2005).
The local convergence properties of Newton-type controllers

might deteriorate in the face of nonlinear effects and strong
perturbations, thus requiring extra safeguards to promote global
convergence (Dennis & Schnabel, 1996; Li & Biegler, 1988).
A strategy able to ameliorate this drawback relies on the
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construction of approximate solutions around a continuously
updated reference solution. Different variants of this are based
on neighboring extremals (Bryson & Ho, 1975; Ohtsuka, 1999;
Pesch, 1989) and NLP sensitivity concepts (Büskens & Maurer,
2001a,b; Kadam&Marquardt, 2004; Zavala, Laird, & Biegler, 2008).
The nominal stability results of Newton-type controllers can also
be used for these controller variants. However, a more general
and constructive analysis of their stability properties can become
cumbersomeunder these arguments, thus leading to unnecessarily
conservative assumptions.
Motivated by these observations, we propose a new NMPC

formulation, the advanced-step NMPC (asNMPC) controller. The
main idea is to use the current control action to predict the
future plant state in order to solve the future OCP in advance,
while the current sampling period evolves. In the nominal case,
the prediction matches the future plant state so that the current
solution is already available, thus avoiding the computational
delay. Similar ideas have been previously proposed in Findeisen
and Allgöwer (2004) and Chen et al. (2000). In this case, the
asNMPC controller inherits the same nominal stability properties
of the ideal NMPC (iNMPC) controller. An issue associated to this
strategy is treatment of disturbances and model mismatch. To
account for these, the proposed controller exploits the parametric
property of the OCP and approximates the true optimal solution
using NLP sensitivity concepts. A direct consequence of this is that
a rigorous bound on the loss of optimality can be established and
related to the bounds of the uncertainty description. With this, it
is possible to analyze the inherent robustness properties of the
asNMPC controller in a straightforward manner using input-to-
state stability concepts. We show that the resulting closed-loop
system is input-to-state stable and contrast its stability bounds
with those of an iNMPC controller. We illustrate the concepts
using a classical nonlinear continuous stirred tank reactor (CSTR)
example and discuss computational issues associated to larger-
scale systems.
The paper is organized as follows. The optimality and stability

properties of an ideal NMPC controller are presented in Section 2.
These properties are contrasted against those of the asNMPC
controller in Section 3. The simulation example is given in Section 4
while Section 5 closes the paper and presents directions for future
work.

2. Ideal NMPC formulation

We assume that the dynamics of an uncertain plant can be
described by the following discrete-time dynamic model,

x(k+ 1) = f̂ (x(k), u(k), w(k))
= f (x(k), u(k))+ g(x(k), u(k), w(k)) (1)

where x(k) ∈ Rnx , u(k) ∈ Rnu and w(k) ∈ Rnw are the plant
states, controls and disturbance signals, respectively, defined at
time steps tk with integers k > 0. The mapping f : Rnx+nu 7→ Rnx

with f (0, 0) = 0 represents the nominal model,

x(k+ 1) = f (x(k), u(k)) (2)

while the term g : Rnx+nu+nw 7→ Rnx can be used to
describe modeling errors, estimation errors and disturbances,
among others. Having x(k), the current plant state or its estimate,
NMPC uses the nominal model,

zl+1 = f (zl, vl), z0 = x(k), l = 0, . . . ,N (3)

to find a control sequence {v0, v1, . . . , vN} and associated state
sequence {z0, z1, . . . , zN} that minimizes the cost function defined
as,

JN := F(zN)+
N−1∑
l=0

ψ(zl, vl) (4)
over a future prediction horizon containing N time steps. Here,
the computed controls vl ∈ Rnu and predicted states zl ∈ Rnx

are enforced to satisfy the constraints vl ∈ U and zl ∈ X and
the terminal constraints zN ∈ Xf ⊆ X, ∀ l. The cost function
JN : Rnx+nu 7→ R comprises the stage costs ψ : Rnx+nu 7→ R

and a terminal penalty function F : Rnx 7→ R. This gives rise to a
parametric NLP problem PN(x(k)) of the form,

min
vl,zl

JN := F(zN)+
N−1∑
l=0

ψ(zl, vl)

s. t. zl+1 = f (zl, vl), z0 = x(k) l = 0, . . . ,N − 1
zl ∈ X, zN ∈ Xf , vl ∈ U. (5)

The solution of PN(x(k)), (z∗l , v
∗

l ), provides an optimal cost value
JN(x(k)) as well as the control u(k) = v∗0 which is injected into the
plant. In the nominal case, this drives the state of the plant towards
x(k + 1) = z(k + 1) = f (x(k), u(k)) where z(k + 1) ∈ Rnx is
the nominal model prediction. In the face of uncertainty, the plant
evolves as in (1) and generates the mismatch x(k + 1) − z(k +
1) = g(x(k), u(k), w(k)). Once x(k + 1) is known, the prediction
horizon is shifted forward by one sampling instant and problem
PN(x(k+1)) is solved to find u(k+1). This recursive strategy gives
rise to the feedback law,

u(k) = hid(x(k)) (6)

with hid : Rnx 7→ Rnu . Here, we will assume that the control
action resulting from this conventional NMPC formulation can be
computed instantaneously and term this the ideal NMPC (iNMPC)
controller.
Many different choices of the penalty function F(·) and of the

terminal set Xf have been proposed to guarantee stability of the
nominal closed-loop system (6). Infinite horizon, quasi-infinite
horizon, zero-state terminal constraint and dual-mode control
represent some alternatives (Mayne, 2000). In addition, since the
recursive solution of the nominal problem PN(x(k)) provides a
mechanism to react to disturbances in (1), the nominal feedback
law (6) provides some inherent robustness. This holds true in
many important cases, except in the presence of state constraints
for X,Xf where a robust formulation of PN(x(k)) is required. In
this work, we focus on nominal NMPC schemes and study their
inherent robustness properties through input-to-state stability
concepts. For a comprehensive summary of robustness analysis
and general robust design of discrete-time NMPC algorithms
please refer to Magni and Scattolini (2007).

2.1. Optimality conditions and NLP sensitivity

The moving horizon OCPPN(·) is parametric in the initial state.
Accordingly, it is possible to define the parameter vector p := x(k).
This study is based on the post-optimal analysis of solutions of the
OCP. Here, we assume that the stage and terminal costs are chosen
appropriately (e.g. through penalty terms) so that x(k) ∈ X, zN ∈
Xf , u(k) ∈ U are satisfied implicitly at a given solution. This
simplifies the analysis below (see Remark 4).
The Lagrange function associated to PN(p) is given by,

L = F(zN(p))+ λ0(p)T(z0(p)− p)+
N−1∑
l=0

[ψ(zl(p), vl(p))

+λl+1(p)T(zl+1(p)− f (zl(p), vl(p)))] (7)

where λl(p) ∈ Rnx are vectors of Lagrange multipliers. Note that
all the primal and dual variables become implicit functions of p.
For simplicity in the presentation, we suppress this argument from
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the notation. The solution of PN(p) needs to satisfy the first-order
optimality or Karush–Kuhn–Tucker (KKT) conditions,

∇λ0L = z0 − p

∇zlL = ∇zlψl − A
T
l λl+1 + λl = 0

∇vlL = ∇vlψl − B
T
l λl+1 = 0

∇λl+1L = zl+1 − fl = 0

 l = 0, . . . ,N − 1

∇zNL = ∇zN FN + λN = 0 (8)

where fl := f (zl, vl), ψl := ψ(zl, vl), FN := F(zN), ATl = ∇zl fl
and BTl = ∇vl fl. This set of nonlinear equations can be expressed
in condensed form,

ϕ(s(p,N), p) = 0 (9)

where the solution vector is defined as s(p,N)T = [λT0, z
T
0, v

T
0, λ

T
1,

zT1, v
T
1, . . . , λ

T
N , z

T
N ] and has optimal values s

∗(p,N). Newton-based
NLP solvers search for a given solution s∗(p0,N) by successive
linearization of (9) around the current point sj(p0,N)with iteration
counter j,

Kj(p0,N)1sj = −ϕ(sj(p0,N), p0) (10)

where, Kj(p0,N) = ∂ϕ

∂s |(sj(p0,N),p0) is the so-called KKT matrix. The
above procedure, coupled to suitable safeguards to monitor the
step size1sj, yields an optimal solution s∗(p0,N).
In large-scale applications, the formation and factorization of

the KKT matrix is by far the most dominant expense in the
solution of the OCP. The computational complexity of this step
scales as O(N(nx + nu))β , β > 1 and is directly linked to
the on-line feedback delay introduced by a conventional NMPC
scheme. To avoid this, we are interested in analyzing the effect
of perturbations on p around a given nominal solution in order
to obtain fast approximate solutions to neighboring problems. For
this, wemake use of the following important result (adapted to the
specifics of NMPC),

Theorem 1 (NLP Sensitivity (Fiacco, 1983, 1976)). If f (·, ·), ψ(·, ·)
and F(·) of the parametric problem PN(p) are twice continuously
differentiable in a neighborhood of the nominal solution s∗(p0,N) and
this solution satisfies the linear independence constraint qualifications
(LICQ) and sufficient second-order conditions (SSOC) then,

• s∗(p0,N) is an isolated local minimizer of PN(p0) and the
associated Lagrange multipliers are unique.
• For p in a neighborhood of p0 there exists a unique, continuous and
differentiable vector function s∗(p,N) which is a local minimizer
satisfying SSOC and LICQ for PN(p).
• There exists a positive Lipschitz constant α such that |s∗(p,N) −
s∗(p0,N)| ≤ α|p− p0| where | · | is the Euclidean norm.
• There exists a positive Lipschitz constant LJ such that the optimal
cost values JN(p) and JN(p0) satisfy |JN(p)− JN(p0)| ≤ LJ |p− p0|.

These results allow the application of the implicit function
theorem to (9) at s∗(p0,N) to yield:

K∗(p0,N)
∂s∗

∂p
= −

∂ϕ(s(p,N), p)
∂p

∣∣∣∣
s∗(p0,N),p0

(11)

whereK∗(p0,N) is the KKTmatrix ofPN(p0) evaluated at s∗(p0,N)
and, ∂ϕ

∂p |s∗(p0,N),p0 = [−Inx , 0, . . . , 0]
T. If the nominal solution

satisfies SSOC and LICQ, then the KKT matrix is non-singular
(Nocedal & Wright, 1999) and can be used to compute the
sensitivity matrix from (11). With this, first-order estimates of
the solutions of neighboring problems can be obtained from the
explicit form,

s̃(p,N) = s∗(p0,N)+
∂s∗

∂p
(p− p0) (12)
where s̃(p,N) is an approximate solution of s∗(p,N). From
continuity and differentiability of the optimal solution vector,
there exists a positive Lipschitz constant Ls such that,

|s̃(p,N)− s∗(p,N)| ≤ Ls|p− p0|2. (13)

Remark 1. The computation of the sensitivity matrix from (11)
requires nx backsolves and becomes expensive for large-scale
systems. To avoid this, we exploit the fact that the parameter
vector p enters linearly into (9). Consequently, the step1s(p,N) =
s̃(p,N)− s∗(p0,N) in (12) can also be found by linearization of the
KKT conditions (9) around s∗(p0,N) to give,

K∗(p0,N)1s(p,N) = −ϕ(s∗(p0,N), p) (14)

where the right-hand side corresponds to the KKT conditions (8)
evaluated at the nominal solution. Therefore, ϕ(s∗(p0,N), p)T =
[(p0 − p)T 0 . . . 0]. Here, 1s(p,N) = s̃(p,N) − s∗(p0,N)
is a Newton step taken from s∗(p0,N) towards the solution of
a neighboring problem PN(p) so that s̃(p,N) satisfies (12)–(13).
Furthermore, computing this step requires a single backsolve.

Remark 2. If f (·) is linear and F(·) and ψ(·) are convex quadratic
functions, then s̃(p,N) = s∗(p,N).

Remark 3. The exact structure of the sensitivity equations (14) is
given by,

1z0 = (p− p0)

Ql1zl +Wl1vl − ATl1λl+1 +1λl = 0
W Tl 1zl + Rl1vl − B

T
l1λl+1 = 0

1zl+1 − Al1zl − Bl1vl = 0

 l = 0, . . . ,N − 1

QN1zN +1λN = 0 (15)

where QN = ∇zN zNL = ∇zN zN F , Ql = ∇zlzlL, Wl = ∇zlvlL and
Rl = ∇vlvlL. In large-scale NLP algorithms, these linear equations
are solved efficiently with some sort of sparse decomposition but
for the analysis we can also apply a Riccati decomposition to give:

1z0 = (p− p0), 1λ0 = −Π01z0
1vl = Kl1zl, 1zl+1 = Al1zl + Bl1vl
1λl+1 = −Πl+11zl+1, l = 0, . . . ,N (16)

with,

ΠN = QN
Πl−1 = Ql−1 + ATl−1ΠlAl−1 − (A

T
l−1ΠlBl−1 +Wl−1)

× (Rl−1 + BTl−1ΠlBl−1)
−1(BTl−1ΠlAl−1 +W

T
l−1)

Kl−1 = −(Rl−1 + BTl−1ΠlBl−1)
−1(BTl−1ΠlAl−1 +W

T
l−1)

l = N, . . . , 0. (17)

From the above recursion, it is clear that if we have an optimal
control v∗(p0) from P (p0), a fast approximate control action for
a neighboring problem P (p) can be obtained from the correction,

ṽ0(p) = v∗0(p0)+ K0 · (p− p0) (18)

where K0 is an analog of the Riccati gain matrix. Note that the
above correction step is equivalent to obtain ṽ0(p) from (12) with
∂v∗0
∂p = K0.

Remark 4. The previous analysis accounts for inequality con-
straints implicitly. It is possible to extend this analysis to account
for inequality constraints explicitly in the problem formulation but
this would complicate the structure of the KKT conditions and the
associated KKT matrix. In addition, note that if the perturbation
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|p − p0| induces an active-set change, the approximate solution
s̃(p) needs to be obtained through the solution of a quadratic pro-
gramming problem. In this case, the factorization of the KKT ma-
trix at the nominal solution can be re-used to correct the active-set
on-line.

2.2. Stability Properties

Ensuring stability of the closed-loop system (1) and (6) is a
central problem in NMPC. Here, we establish well-known results
on nominal and robust stability for the iNMPC controller. To start
the discussion, we refer to Keerthi and Gilbert (1988) and Magni
and Scattolini (2007) to make use of the following definitions and
assumptions:

Definition 1. A continuous function α(·) : R→ R is aK function
if α(0) = 0, α(s) > 0,∀s > 0 and it is strictly increasing. A
continuous function β : R × Z → R is aKL function if β(s, k)
is a K function in s for any k > 0 and for each s > 0, β(s, ·) is
decreasing and β(s, k)→ 0 as k→∞.

Definition 2 (Lyapunov Function). A function V (·) is called a
Lyapunov function for system (2) if there exist an invariant set X,
K functions α1, α2 and α3 such that, ∀x ∈ X,

V (x) ≥ α1(|x|) (19a)
V (x) ≤ α2(|x|) (19b)

1V (x) = V (f (x, hid(x)))− V (x) ≤ −α3(|x|). (19c)

Assumption 1 (Nominal Stability Assumptions of iNMPC).

• The terminal penalty F(·), satisfies F(z) > 0,∀z ∈ Xf \ {0},
• There exists a local control law u = hf (z) defined on Xf , such
that f (z, hf (z)) ∈ Xf ,∀z ∈ Xf , and F(f (z, hf (z))) − F(z) ≤
−ψ(z, hf (z)),∀z ∈ Xf .
• The optimal stage cost ψ(x, u) satisfies αp(|x|) ≤ ψ(x, u) ≤
αq(|x|)where αp(·) and αq(·) areK functions.

Assumption 2 (Computational Delay of iNMPC). The control law
u = hid(x) can be computed instantaneously.

Nominal stability of iNMPC can be paraphrased by the following
theorem (Allgöwer, Badgwell, Qin, Rawlings, & Wright, 1999; de
Nicolao, Magni, & Scattolini, 2000; Mayne, 2000).

Theorem 2 (Nominal Stability of iNMPC). Consider the moving
horizon problemPN(x) defined in (5) and associated control law u =
hid(x), that satisfies Assumptions 1 and 2. Then, JN(x) is a Lyapunov
function and the closed-loop system is asymptotically stable.

For the analysis of robust stability properties of the iNMPC
controller, we apply definitions and properties of Input-to-State
Stability (ISS) (Jiang & Wang, 2001; Magni & Scattolini, 2007).

Definition 3 (Input-to-State Stability). The system,

x(k+ 1) = f̂ (x(k), hid(x(k)), w(k)), k ≥ 0, x(0) = x0 (20)

is said to be ISS in X if there exists a KL function β , and a K
function γ such that for allw ∈ W ,

|x(k)| ≤ β(|x0|, k)+ γ (|w|), ∀ k ≥ 0,∀x0 ∈ X. (21)
Definition 4 (ISS-Lyapunov Function). A function V (·) is called an
ISS-Lyapunov function for system (20) if there exist a set X, K
functions α1, α2, α3 and σ such that, ∀x ∈ X and ∀w ∈ W ,

V (x) ≥ α1(|x|) (22a)
V (x) ≤ α2(|x|) (22b)

1V (x, w) = V (f̂ (x, hid(x), w))− V (x)
≤ −α3(|x|)+ σ(|w|). (22c)

Lemma 3 (Jiang &Wang, 2001; Magni & Scattolini, 2007). Let X be a
robustly invariant set for system (20) that contains the origin and let
V (·) be an ISS-Lyapunov function for this system, then the resulting
system is ISS in X.

To deal with robustness of the controller, we recognize that
given u(k) and the nominal model prediction z(k + 1) =
f (x(k), u(k)), there will exist a future mismatch x(k + 1) − z(k +
1) = g(x(k), u(k), w(k)) at the next time step, giving rise to two
different problems PN(z(k + 1)) and PN(x(k + 1)), with optimal
costs JN(z(k+1)) and JN(x(k+1)), respectively. To account for this,
we define the mismatch term (Santos & Biegler, 1999),

ε(x(k+ 1)) := JN(x(k+ 1))− JN(z(k+ 1)). (23)

Assumption 3. Under Theorem 1, there exists a local positive
Lipschitz constant LJ such that ∀x ∈ X,

|ε(x(k+ 1))| ≤ LJ |g(x(k), u(k), w(k))|. (24)

Assumption 4 (Robust Stability Assumptions). For u = hid(x),
• g(x, u, w) can be described byK functions so that: |g(x, u, w)|
≤ αg(|x|)+ σ(|w|).
• there exists aK function α4 and all w ∈ W and there exists a
constantM > 0 such that:

−ψ(x, u)+M(αg(|x|)+ σ(|w|)) ≤ −α4(|x|)+ σ(|w|).

Robust stability of the iNMPC controller can be established from
the following theorem.

Theorem 4 (Robust ISS Stability of iNMPC (Jiang & Wang, 2001;
Magni & Scattolini, 2007)). Under Assumptions 1 and 4, with M ≥ LJ ,
the cost function JN(x) obtained from the solution of PN(x), is an ISS-
Lyapunov function and the resulting closed-loop system is ISS stable.

Proof. We compare the costs of the neighboring problems
PN(x(k)) andPN(x(k+1)) and introduce the effect of disturbances
through ε(x(k+ 1)),

JN(x(k+ 1))− JN(x(k))
= JN(z(k+ 1))− JN(x(k))+ JN(x(k+ 1))− JN(z(k+ 1))
≤ F(f (z∗N , hf (z

∗

N)))− F(z
∗

N)+ ψ(z
∗

N , hf (z
∗

N))

−ψ(x(k), u(k))+ ε(x(k+ 1))
≤ −ψ(x(k), u(k))+ ε(x(k+ 1))

where the last two inequalities result from the fact that the
solution of PN(x(k)) provides a feasible solution to PN(z(k + 1)).
With this, the existence of the terminal controller of Assumption 1
ensures that the stage cost ψ(x(k), u(k)) is the only accumulation
point. Making use of Assumptions 3 and 4 to bound the mismatch
term leads to,

JN(x(k+ 1))− JN(x(k)) ≤ −α4(|x(k)|)+ σ(|w(k)|)

which fulfills (22c) withM ≥ LJ . From Assumption 1 we also know
that JN(x(k)) satisfies (22a)–(22b). Therefore, the desired result
follows from Lemma 3. In the nominal case, stability follows with
M = 0. �
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Corollary 5 (Asymptotic Robust Stability (Magni& Scattolini, 2007)).
Assume that W = {0} and that Assumptions 1–4 hold. Then the
closed-loop system given by (1) and u = hid(x) is asymptotically
stable.

Remark 5. The above results assume Lipschitz continuity of the
optimal cost function and of the control law. For the general
nonlinear systems considered in this work, we guarantee Lipschitz
continuity in a restricted neighborhood (possibly small) of an
optimal solution satisfying the conditions of Theorem 1.

2.3. Computational Issues

It is clear that Assumption 2 is too restrictive since in practical
applications PN(x) may be computationally expensive to solve.
This implies that the control action u = hid(x) cannot be injected
into the plant right after x is obtained but only once the solution of
PN(x) has been obtained. As a consequence, the resulting delayed
feedback actionwill be inconsistentwith the current evolving state
(Chen et al., 2000; Findeisen & Allgöwer, 2004; Santos et al., 2001).

3. Advanced-step NMPC formulation

Consider that the state of the plant at tk is x(k) and thatwe count
with the control actionu(k). In the nominal case the systemevolves
as in (2). As a consequence, starting at tk we can predict the future
state z(k + 1) and solve the predicted problem PN(z(k + 1)) in
advance. If this problem can be solved during the current sampling
time, then u(k+1) = hid(x(k+1))will already be available at tk+1.
This simple strategy allows to remove the computational delay
and preserves the iNMPC controller properties. In the presence
of disturbances, the plant will evolve with uncertain dynamics
towards the true state x(k+1) = z(k+1)+g(x(k), u(k), w(k)). In
this case, the iNMPC control action cannot be computed in advance.
In order to account for this, we exploit the parametric property
of the OCP problem to compute a fast approximate solution of
PN(x(k + 1)) around the available nominal solution of PN(z(k +
1)) to obtain fast feedback. We call the resulting algorithm the
advanced-step NMPC controller (asNMPC):

In background, between tk and tk+1:

• Having x(k) and u(k), predict the future state through forward
simulation z(k+1) = f (x(k), u(k)). Set p0 = z(k+1) and solve
the predicted problem P (p0).
• At the solution s∗(p0,N), retain factors of K∗(p0,N) or compute
sensitivity matrix ∂s

∗

∂p from (11).

On-line, at tk+1:

• Obtain the true state x(k + 1) and set p = x(k + 1). Compute
the fast approximate solution s̃(p,N) from sensitivity (12) or as
a perturbed Newton step (14), extract u(k+ 1) = ṽ0(x(k+ 1)),
set k = k+ 1, and return to background step.

The above asNMPC algorithm yields the approximate control
law, u(k) = has(x(k)).

Theorem 6 (Error Bound of asNMPC). From Theorem 1 with p0 =
z(k + 1) and p = x(k + 1) = z(k + 1) + g(x(k), u(k), w(k)),
the approximation error between the asNMPC and iNMPC control laws
satisfies |has(x(k+ 1))− hid(x(k+ 1))| ≤ Lash |g(x(k), u(k), w(k))|

2

with a local positive Lipschitz constant Lash .
Proof. The asNMPC control action ṽ0(x(k + 1)) is extracted
from the approximate solution s̃(x(k + 1)) obtained from the
perturbation p− p0 = g(x(k), u(k), w(k)). From (18) we have,

u(k+ 1) = ṽ0(x(k+ 1))
= v∗0(z(k+ 1))+ K0 · (x(k+ 1)− z(k+ 1))

= v∗0(z(k+ 1))+ K0 · g(x(k), u(k), w(k)). (25)

The error bound follows from (13) and the equivalence between
(18), (12) and (14) to give,

|u(k+ 1)− v∗0(x(k+ 1))| ≤ L
as
h |g(x(k), u(k), w(k))|

2. �

For later reference, we note that solving the background problem
PN(z(k+ 1)) = PN(f (x(k), has(x(k)))) is equivalent to solving the
following extended problem PN+1(x(k), has(x(k))),

min
vl,zl

JN+1 := F(zN)+ ψ(x(k), has(x(k)))+
N−1∑
l=0

ψ(zl, vl)

s. t. zl+1 = f (zl, vl), l = 0, . . .N − 1
z0 = f (x(k), has(x(k)))
zl ∈ X, zN ∈ Xf , vl ∈ U (26)

with fixed has(x(k)) computed from (25). In the following section,
we will see that the cost function JN+1(x, has(x)) associated to this
problem can be used as a candidate Lyapunov function to derive
sufficient stability conditions for the asNMPC control law.

3.1. Stability properties

To analyze the stability properties of the proposed controller
we make use of the assumptions and definitions of Section 2 with
a slight modification,

Assumption 5 (Computational Delay of asNMPC). The background
calculations associated to the solution of the forward problem
PN(f (x, has(x))) can be obtained in one sampling time. Moreover,
the sensitivity update can be obtained in a negligible amount of
time.

In the nominal case, the asNMPC and iNMPC controllers produce
identical control actions. This follows from Theorem 6 with
g(x, u, w) = 0. Under Assumption 5, Theorem 2 applies directly.
For the analysis of the robustness properties of the asNMPC
controller it is necessary to account for the effect of NLP sensitivity
errors. As shown in Fig. 1,we recognize that the forward simulation
z(k + 1) = f (x(k), u(k)) will predict the future state at tk+1.
In the nominal case, this would give rise to the control action
hid(z(k + 1)) = has(z(k + 1)) that would be used to start the
extended problemPN+1(z(k+1), hid(z(k+1)))with cost J id(z(k+
1)) := JN+1(z(k+1), hid(z(k+1))). However, the plant will evolve
with uncertain dynamics generating x(k + 1). Ideally, this would
give rise to the optimal control action hid(x(k + 1)) that would
be used to solve PN+1(x(k + 1), hid(x(k + 1))) at the next time
step with cost J id(x(k + 1)) := JN+1(x(k + 1), hid(x(k + 1))). In
reality, we compute the approximate control has(x(k + 1)) from
(25) giving rise to problem PN+1(x(k + 1), has(x(k + 1))) with
cost Jas(x(k + 1)) := JN+1(x(k + 1), has(x(k + 1))). Since this is a
suboptimal cost, it needs to be compared against the optimal cost
J id(x(k+1)). To account for this, we define the followingmismatch
terms,

εs(x(k+ 1)) := J id(x(k+ 1))− J id(z(k+ 1)) (27a)

εas(x(k+ 1)) := Jas(x(k+ 1))− J id(x(k+ 1)) (27b)

where the first term accounts for the model mismatch as in
(23) while the second term accounts for approximation errors
introduced by NLP sensitivity.
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Fig. 1. Advanced-step NMPC controller behavior.

Assumption 6. Under Theorems 1 and 6 there exist positive
Lipschitz constants LJ , Lh and Lash such that ∀x ∈ X,

|εs(x(k+ 1))| ≤ LJ(|x(k+ 1)− z(k+ 1)|
+ |hid(x(k+ 1))− hid(z(k+ 1))|)

≤ LJ(1+ Lh)|g(x(k), u(k), w(k))| (28a)

|εas(x(k+ 1))| ≤ LJ(|x(k+ 1)− x(k+ 1)|
+ |has(x(k+ 1))− hid(x(k+ 1))|)

≤ LJLash |g(x(k), u(k), w(k))|
2. (28b)

By comparing the successive costs Jas(x(k)) and Jas(x(k + 1)), we
can arrive at a similar ISS property as in Theorem 4.

Theorem 7 (Robust Stability of asNMPC). Under Assumptions 1, 4
and 5 with M ≥ LJ(1 + Lh + Lash |g(x, u, w)|) > 0, the cost function
Jas(x) obtained from the solution of the extended problemPN+1(x, u)
with u = has(x) is an ISS-Lyapunov function and the resulting closed-
loop system is ISS stable.

Proof. We compare the costs Jas(x(k)), Jas(x(k + 1)) and use the
mismatch terms in (28b)–(28a) to obtain,

Jas(x(k+ 1))− Jas(x(k)) = J id(z(k+ 1))− Jas(x(k))
+J id(x(k+ 1))−J id(z(k+1))+ Jas(x(k+ 1))−J id(x(k+ 1))

≤−ψ(x(k), has(x(k)))+ εs(x(k+ 1))+ εas(x(k+ 1)). (29)

The last inequality in (29) results from noting that the solution of
PN+1(x(k), hid(x(k))) provides a feasible solution to PN+1(z(k +
1), hid(z(k + 1))). Applying the bounds (28a)–(28b), the result
follows withM ≥ LJ(1+ Lh + Lash |g(x(k), u(k), w(k))|) > 0. �

Note that if NLP sensitivity errors vanish (e.g. linear MPC) then
εas(x) = 0. Accordingly,M ≥ LJ(1+Lh) is sufficient andwe recover
similar (i.e. one step forward) robust stability properties of iNMPC
as in Theorem 4. In the nominal case, x(k + 1) = z(k + 1) and
M = 0 is sufficient for nominal stability.

3.2. Computational issues

The proposed asNMPC algorithm is expected to reduce the
on-line computational cost by two or three orders of magnitude.
This results from the difference between the computational
complexity of a single backsolve against that of the formation and
factorization of the KKT matrix (Zavala et al., 2008). However,
notice that Assumption 5 requires that the background solution
can be obtained in one sampling time. Under mild conditions,
if the sensitivity approximation is used to warm-start the next
problem, the background problem can be converged in a few
iterations (Diehl et al., 2005). Finally, note that it is possible
to compute rigorous values of the Lipschitz constants that will
implicitly take account the nonlinearity and disturbances of a
particular system. Such bounds can be computed using NLP
sensitivity concepts. This strategy has been applied in Santos and
Biegler (1999) and Santos, Castro and Biegler (2008) to estimate LJ
as in Theorem 4 in order to characterize the robustness properties
of iNMPC formulations.
4. Simulation example

We consider a simulated NMPC scenario on a nonlinear CSTR
model (Hicks&Ray, 1971) represented by the followingdifferential
equations:

dzc

dt
=
zc − 1
θ
+ k0zc exp

[
−Ea
zt

]
(30a)

dzt

dt
=
zt − ztf
θ
− k0zc exp

[
−Ea
zt

]
+ αv(zt − ztcw). (30b)

The system involves two states zT = [zc, zt ] corresponding to
dimensionless concentration and temperature, and one control
v corresponding to the cooling water flowrate. The model
parameters are ztcw = 0.38, z

t
f = 0.395, Ea = 5, α = 1.95 × 10

4,
θ = 20, and k0 = 300. These differential equations are converted
to the form of (2) through an implicit Runge–Kutta discretization,
with each step representing a sampling time. To simulate the
plant evolution, we introduce off-set free plant-model mismatch
by perturbing the nominal value of the reactor residence time θ
from its nominal θnom. In addition, we introduce Gaussian noise
with σ standard deviation, as a percentage on the initial states, to
simulate the presence of measurement or estimation errors. The
OCP is formulated using a quadratic functionψ(z, v) = ẑTQ ẑ+Rv̂2
with Q = diag{1 × 106, 2 × 103}, R = 1 × 10−3, terminal
weight F(z) = ẑTQ ẑ and ẑ = z − zss, v̂ = v − vss where subscript
ss denotes steady-state value. The resulting NLP problems contain
18× N variables and 6× N constraints where N is the number of
time steps. While the resulting NLPs can be solved in a negligible
amount of time, the performance characteristics apply to much
larger examples as well (Zavala et al., 2008).
We demonstrate the performance of the iNMPC and asNMPC

controllers under different robust scenarios. Here, we choose
N = 10 along with a zero terminal constraint zN = zss. The
controllers first perform the transition between two open-loop
unstable steady states (SS1 and SS2) followed by a subsequent
transition to a stable steady state, SS3. The location of the three
steady-states is illustrated in the v–zt bifurcation diagram in Fig. 2.
The control is required to satisfy 250 ≤ v ≤ 450 where the upper
bound is set close to its corresponding value at SS2. This tends to
amplify approximation errors and thus illustrate the advantages
and limitations of the proposed controller. In Fig. 3 we illustrate
the effect of increasing model mismatch due to perturbations in
the reactor residence time. From the top graph it is clear that
for a perturbation of (θ = 0.75θnom) the performance of both
iNMPC and asNMPC is nearly identical. Both controllers are able to
handle relatively large perturbations. However, as the mismatch
is increased (θ = 0.5θnom) the performance of asNMPC tends
to drift away and the closed-loop system destabilizes due to the
presence of approximation errors. This is particularly evident in
the second transition. Interestingly, for a slightly larger mismatch
(θ = 0.45θnom) the iNMPC controller is not able to reject the
perturbation in the second transition either, and the close-loop
becomes unstable. In other words, both controllers are able to
tolerate similar levels of mismatch, suggesting that the effect of
approximation errors in the asNMPC is not very strong. Similar
behavior can be seen when the controllers are subjected to
simultaneous noise and model mismatch (θ = 0.75θnom) as
illustrated in Fig. 4. Again, for small levels of noise (σ = 2.5%),
the performance of the two controllers is almost identical. The
asNMPC controller is able to tolerate larger levels of noise (up to
σ = 7.5%) but its performance deteriorates due to approximation
errors, specially in the transition from SS1 to SS2.
To illustrate the role of approximation errors on the stability

of asNMPC, we perform a more detailed analysis on the second
transition for scenario θ = 0.45θnom from Fig. 3. The results are
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Fig. 2. Steady-state map between temperature zt and cooling water flow rate v.
Solid vertical lines represent input and output constraints.

Fig. 3. Effect of plant-model mismatch on the performance of the controllers.

Fig. 4. Effect of noise on the performance of the controllers. Perturbation on
residence time at 25% below nominal value.

illustrated in Fig. 5. In the top graph, we present the profiles of the
predicted z(k) and the actual x(k) temperatures. As can be seen,
the perturbation in θ creates large deviations between both states.
The mismatch is expected to generate a difference between the
asNMPC control action has(x) from that of the iNMPC hid(x)which is
illustrated in the second graph. Interestingly, note that despite the
Fig. 5. Analysis of the effect of mismatch terms on the stability of the advanced-
step controller.

relatively large mismatch, the asNMPC and iNMPC control actions
are identical before the system destabilizes at time step 120. This
would suggest that the systemdoes not destabilize in the first place
due to approximation errors. To validate this, we present profiles
in the third graph of the left-hand side (LHS) and right-hand side
(RHS) of (29), the sufficient stability condition from Theorem 7.
Stability implies that LHS ≤ RHS. As can be seen, this condition
is fulfilled up to time step 95. However, note that even though
the two control actions are identical at this point, there is a cross-
over LHS ≥ RHS and the system destabilizes. To explain this,
we present profiles for the mismatch terms in the bottom graph.
As can be seen, the magnitude of the mismatch introduced by
approximation errors εas(x) tends to be smaller compared to that
introduced by the perturbations εs(x). However, at time step 95
the approximation errors become relevant and, even though the
injected control actions are identical, the combinedmismatch terms
promote a cross-over in the stability condition (29) of Theorem 7.
As predicted by (29), this destabilizes the system. It has been
observed that, once the system becomes unstable, the oscillations
become aggressive and the perturbations induce changes in the
active-set for the perturbed problems (e.g. control profiles at time
steps 120 and 140). These changes cannot be predicted by the
NLP sensitivity calculation and require the solution of a quadratic
programming problem. While this might improve the quality of
the approximations, understanding the implications of active-set
changes in the stability of the asNMPC controller requires a deeper
analysis of the Lipschitz continuity assumptionsmade in thiswork.

5. Conclusions and future work

In this study, we derive and analyze the optimality and stability
properties of the advanced-step NMPC (asNMPC) controller.
This controller avoids feedback delays associated to the on-line
solution of large-scale OCPs. Here, the moving horizon OCP is
formulated with an advanced-step control action and it is solved,
in background, between sampling times. This study shows that
the asNMPC controller has identical nominal stability properties
of the ideal NMPC controller without computational delay. In the
presence of disturbances, the controller exploits the parametric
properties of the OCP through NLP sensitivity concepts to provide
a fast on-line correction of the nominal solution. With this, a
rigorous bound on the loss of optimality can be established
and related to the bounds of the uncertainty description. This
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allows to characterize the robustness properties of the controller
through input-to-state stability concepts. As part of future work,
we plan an extension of the asNMPC controller to more expensive
background calculations that may take place over multiple time
steps. Moreover, the effect of disturbances and model mismatch
can be attenuated through on-line state estimation. For this, we
plan to use fast NLP sensitivity-based moving horizon estimators
developed in a recent study (Zavala, Laird, & Biegler, 2008). Finally,
a deeper analysis of the impact of active-set changes on the
stability of the approximate NMPC controllers is an important area
of future research.
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